What do we know about the Standard Model?

Sally Dawson

Lecture 4

TASI, 2006

The Standard Model Works

- □ Any discussion of the Standard Model has to start with its success
- ☐ This is unlikely to be an accident!

Unitarity

Consider 2 → 2 elastic scattering

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} |A|^2$$

Partial wave decomposition of amplitude

$$A = 16\pi \sum_{l=0}^{\infty} (2l+1)P_l(\cos\theta)a_l$$

a_I are the spin / partial waves

Unitarity

P_I(cosθ) are Legendre polynomials:

$$\int_{-1}^{1} dx P_{l}(x) P_{l'}(x) = \frac{2\delta_{l,l'}}{2l+1}$$

$$\sigma = \frac{8\pi}{s} \sum_{l=0}^{\infty} (2l+1) \sum_{l'=0}^{\infty} (2l'+1) a_l a_{l'}^* \int_{-1}^{1} d\cos\theta P_l(\cos\theta) P_{l'}(\cos\theta)$$

$$= \frac{16\pi}{s} \sum_{l=0}^{\infty} (2l+1) |a_l|^2$$

Sum of positive definite terms

More on Unitarity

• Optical theorem $\sigma = \frac{1}{S} \text{Im} [A(\theta = 0)] = \frac{16\pi}{S} \sum_{l=0}^{\infty} (2l+1) |a_l|^2$

$$\left| \operatorname{Im}(a_l) = \left| a_l \right|^2 \right|$$

Optical theorem derived assuming only conservation of probability

Unitarity requirement:

$$\left| \operatorname{Re}(a_l) \right| \le \frac{1}{2}$$

More on Unitarity

Idea: Use unitarity to limit parameters of theory

Cross sections which grow with energy always violate unitarity at some energy scale

Example 1: $W^+W^- \rightarrow W^+W^-$

 Recall scalar potential (Include Goldstone Bosons in Unitarity gauge)

$$V = \frac{M_h^2}{2} h^2 + \frac{M_h^2}{2v} h (h^2 + z^2 + 2\omega^+ \omega^-)$$
$$+ \frac{M_h^2}{8v^2} (h^2 + z^2 + 2\omega^+ \omega^-)^2$$

Consider Goldstone boson scattering:

$$\omega^{+}\omega^{-} \longrightarrow \omega^{+}\omega$$

$$iA(\omega^{+}\omega \longrightarrow \omega^{+}\omega^{-}) = -2i\frac{M_{h}^{2}}{v^{2}} + \left(-i\frac{M_{h}^{2}}{v}\right)^{2}\frac{i}{t - M_{h}^{2}}$$

$$+ \left(-i\frac{M_{h}^{2}}{v}\right)^{2}\frac{i}{s - M_{h}^{2}}$$

$$\omega^+\omega^- \rightarrow \omega^+\omega^-$$

- Two interesting limits:
 - \square s, t $>> M_h^2$

$$A(\omega^+\omega^- \to \omega^+\omega^-) \to -2\frac{M_h^2}{v^2}$$

$$a_0^0 \to -\frac{M_h^2}{8\pi v^2}$$

$$\square$$
 s, t $<< M_h^2$

$$A(\omega^+\omega^- \to \omega^+\omega^-) \to -\frac{u}{v^2}$$

$$a_0^0 \rightarrow -\frac{s}{32\pi v^2}$$

Use Unitarity to Bound Higgs

$$\left| \operatorname{Re}(a_l) \right| \leq \frac{1}{2}$$

High energy limit:

$$a_0^0 \to -\frac{M_h^2}{8\pi v^2}$$

 $M_h < 800 \text{ GeV}$

Heavy Higgs limit

$$\begin{bmatrix} a_0^0 \to -\frac{s}{32\pi v^2} \end{bmatrix} \quad \begin{cases} E_c \sim 1.7 \text{ TeV} \\ \to \text{New physics at the TeV scale} \end{cases}$$

Can get more stringent bound from coupled channel analysis

Electroweak Equivalence Theorem

$$A(V_L^1...V_L^N \to V_L^1...V_L^{N'}) = (i)^N (-i)^{N'} A(\omega_1...\omega_N \to \omega_1...\omega_{N'}) + O\left(\frac{M_W^2}{E^2}\right)$$

This is a statement about scattering amplitudes, NOT individual Feynman diagrams

Plausibility argument for Electroweak Equivalence Theorem

■ Compute $\Gamma(h \rightarrow W_L^+W_L^-)$ for $M_h >> M_W$

$$\varepsilon_{L} = \frac{1}{M_{W}} (|\vec{p}|, 0, 0, p_{0}) \approx \frac{p}{M_{W}}$$

$$\Gamma(h \to W_L^+ W_L^-) \approx \frac{G_F M_h^3}{8\pi\sqrt{2}}$$
$$= \Gamma(h \to \omega^+ \omega^-)$$

$$iA = -igM_{W}g^{\mu\nu}\mathcal{E}_{\mu}\mathcal{E}_{\nu}$$

$$= -igM_{W}\frac{p_{+}\cdot p_{-}}{M_{W}^{2}}$$

$$\rightarrow -ig\frac{M_{h}^{2}}{2M_{W}}$$

$$\Gamma(h\rightarrow WW) \approx M_h$$

for $M_h \approx 1.4 \text{ TeV}$

Landau Pole

- M_h is a free parameter in the Standard Model
- Can we derive limits on the basis of consistency?
- Consider a scalar potential:

$$V = \frac{M_h^2}{2}h^2 + \frac{\lambda}{4}h^4$$

- This is potential at electroweak scale
- Parameters evolve with energy in a calculable way

Consider hh→hh

- Real scattering, s+t+u=4M_h²
- Consider momentum space-like and off-shell: s=t=u=Q²<0</p>
- Tree level: $iA_0 = -6i\lambda$



$hh \rightarrow hh$, #2

One loop:

$$iA_{s} = (-6i\lambda)^{2} \frac{1}{2} \int \frac{d^{n}k}{(2\pi)^{2}} \frac{i}{k^{2} - M_{h}^{2}} \frac{i}{(k+p+q)^{2} - M_{h}^{2}}$$
$$= \frac{9\lambda^{2}}{8\pi^{2}} (4\pi\mu^{2}) \Gamma(\varepsilon) \left(M_{h}^{2} - Q^{2}x(1-x)\right)^{-\varepsilon}$$

 $= A = A_0 + A_s + A_t + A_u$

$$A = -6\lambda \left(1 + \frac{9\lambda}{16\pi^2} (4\pi\mu^2)\Gamma(\varepsilon) \left(M_h^2 - Q^2 x (1-x)\right)^{-\varepsilon} + \dots\right)$$

$hh \rightarrow hh, #3$

 Sum the geometric series to define running coupling

$$A = -6\lambda \left(1 + \frac{9\lambda}{16\pi^2} \log \frac{Q^2}{M_h^2} \right) + \dots$$

$$A = \frac{6\lambda}{1 - \frac{9\lambda}{8\pi^2} \log \left(\frac{Q}{M_h^2} \right)} \equiv 6\lambda(Q)$$

λ(Q) blows up as Q→∞ (called Landau pole)

hh→hh, #4

- This is independent of starting point
- BUT.... Without $\lambda \phi^4$ interactions, theory is noninteracting
- Require quartic coupling be finite

$$\frac{1}{\lambda(Q)} > 0$$

$hh \rightarrow hh$, #5

- Use λ=M_h²/(2v²) and approximate log(Q/M_h) → log(Q/v)
- Requirement for $1/\lambda(Q)>0$ gives upper limit on M_h

$$M_h^2 < \frac{32\pi^2 v^2}{9\log\left(\frac{Q^2}{v^2}\right)}$$

- Assume theory is valid to 10¹⁶ GeV
 - Gives upper limit on M_h< 180 GeV
- Can add fermions, gauge bosons, etc.

High Energy Behavior of λ

■ Renormalization group scaling $\frac{1}{\lambda(Q)} = \frac{1}{\lambda(\mu)} + (...) \log \left(\frac{Q}{\mu}\right)$

$$16\pi^{2} \frac{d\lambda}{dt} = 12\lambda^{2} + 12\lambda g_{t}^{2} - 12g_{t}^{4} + (gauge)$$

$$t \equiv \log\left(\frac{Q^2}{\mu^2}\right) \qquad \qquad g_t = \frac{M_t}{v}$$

- Large λ (Heavy Higgs): self coupling causes λ to grow with scale
- Small λ (Light Higgs): coupling to top quark causes λ to become negative

Does Spontaneous Symmetry Breaking Happen?

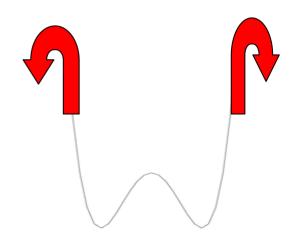
- SM requires spontaneous symmetry
- This requires V(v) < V(0)

For small λ

$$16\pi^2 \frac{d\lambda}{dt} \approx -16g_t^4$$

Solve

$$\lambda(\Lambda) \approx \lambda(\nu) - \frac{3g_t^4}{4\pi^2} \log\left(\frac{\Lambda^2}{\nu^2}\right)$$



Does Spontaneous Symmetry Breaking Happen? (#2)

• $\lambda(\Lambda) > 0$ gives lower bound on M_h

$$\left| M_h^2 > \frac{3v^2}{2\pi^2} \log \left(\frac{\Lambda^2}{v^2} \right) \right|$$

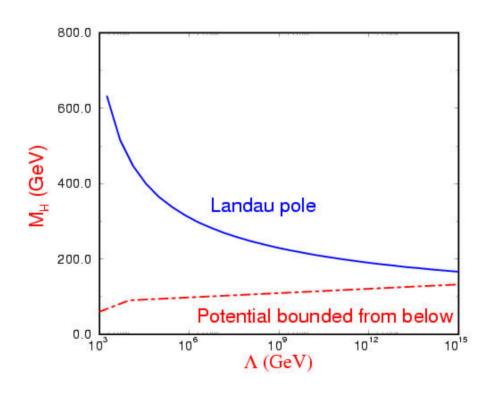
If Standard Model valid to 10¹⁶ GeV

$$|M_h| > 130 \, GeV$$

 For any given scale, Λ, there is a theoretically consistent range for M_h

Bounds on SM Higgs Boson

If SM valid up to Planck scale, only a small range of allowed Higgs Masses



Problems with the Higgs Mechanism

 We often say that the SM cannot be the entire story because of the quadratic divergences of the Higgs Boson mass

Masses at one-loop

First consider a fermion coupled to a massive complex Higgs scalar

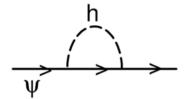
$$L = \overline{\Psi}(i\partial)\Psi + \left|\partial_{\mu}\phi\right|^{2} - m_{s}\left|\phi\right|^{2} - \left(\lambda_{F}\overline{\Psi}_{L}\Psi_{R}\phi + h.c.\right)$$

Assume symmetry breaking as in SM:

$$\phi = \frac{(h+v)}{\sqrt{2}} \qquad m_F = \frac{\lambda_F v}{\sqrt{2}}$$

Masses at one-loop, #2

Calculate mass renormalization for Ψ



$$-i\Sigma_F(p) = \left(\frac{-i\lambda_F}{\sqrt{2}}\right)^2 (i)^2 \int \frac{d^4k}{(2\pi)^4} \frac{k + m_F}{[k^2 - m_F^2][(k - p)^2 - m_s^2]}$$

Renormalized fermion mass

$$\delta m_F = \Sigma_F(p) \Big|_{p=m_F}$$

$$= i \frac{\lambda_F^2}{32\pi^4} \int_0^1 dx \int d^4k' \frac{m_F(1+x)}{[k'^2 - m_F^2 x^2 - m_s^2 (1-x)]^2}$$

Do integral in Euclidean space

$$k_0 \to ik_4$$

$$d^4k' \to id^4k_E$$

$$k'^2 = k_0^2 - \left|\vec{k}\right|^2 \to k_4^2 - \left|\vec{k}\right|^2 = -k_E^2$$

$$\int d^4k_E f(k_E^2) = \pi^2 \int_{-\infty}^{\Lambda^2} y \, dy \, f(y)$$

Renormalized fermion mass, #2

Renormalization of fermion mass:

$$\delta m_F = -\frac{\lambda_F^2 m_F}{32\pi^2} \int_0^1 dx \ (1+x) \int_0^{\Lambda^2} \frac{y \ dy}{\left[y + m_F^2 x^2 + m_s^2 (1-x)\right]^2}$$

$$= -\frac{3\lambda_F^2 m_F}{32\pi^2} \log \left(\frac{\Lambda^2}{m_F^2}\right) + \dots$$

Symmetry and the fermion mass

- \bullet $\delta m_F \approx m_F$
 - □ m_F=0, then quantum corrections vanish
 - When m_F=0, Lagrangian is invariant under
 - $\Psi_L \rightarrow e^{i\theta_L} \Psi_L$
 - $\Psi_R \rightarrow e^{i\theta} \Psi_R$
 - \square m_F \rightarrow 0 increases the symmetry of the threoy
 - □ Yukawa coupling (proportional to mass) breaks symmetry and so corrections ≈ m_F

Scalars are very different

$$-i\Sigma_{s}(p^{2}) = -\left(\frac{-i\lambda_{F}}{\sqrt{2}}\right)^{2}(i)^{2}\int \frac{d^{4}k}{(2\pi)^{4}} \frac{Tr[(k+m_{F})((k-p)+m_{I}) - \mu_{I}]}{(k^{2}-m_{F}^{2})[(k-p)^{2}-m_{I}^{2}]} - \frac{h}{(k^{2}-m_{F}^{2})[(k-p)^{2}-m_{I}^{2}]}$$

$$\delta M_h^2 = \Sigma_S(m_s^2) = -\frac{\lambda_F^2 \Lambda^2}{8\pi^2} + \left(m_s^2 - m_F^2\right) \log\left(\frac{\Lambda}{m_F}\right) + (2m_F^2 - \frac{m_s^2}{2}) \left(1 + I_1\left(\frac{m_s^2}{m_F^2}\right)\right) + O\left(\frac{1}{\Lambda^2}\right) \qquad I_1(a) = \int_0^1 dx \, \log(1 - ax(1 - x))$$

- M_h diverges quadratically!
- This implies quadratic sensitivity to high mass scales

Scalars (#2)

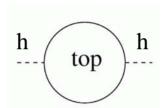
- M_h diverges quadratically!
- Requires large cancellations (hierarchy problem)
- Can do this in Quantum Field Theory
- h does not obey decoupling theorem
 - Says that effects of heavy particles decouple as M→∞
- M_h→0 doesn't increase symmetry of theory
 - Nothing protects Higgs mass from large corrections

Light Scalars are Unnatural

• Higgs mass grows with scale of new physics, Λ

• No additional symmetry for $M_h=0$, no protection

from large corrections



$$\delta M_h^2 = \frac{G_F}{4\sqrt{2}\pi^2} \Lambda^2 \left(6M_W^2 + 3M_Z^2 + M_h^2 - 12M_t^2\right)$$

$$= -\left(\frac{\Lambda}{0.7 \,\text{TeV}} \, 200 \,\text{GeV}\right)^2$$

 $M_h \le 200 \text{ GeV}$ requires large cancellations

What's the problem?

 Compute M_h in dimensional regularization and absorb infinities into definition of M_h

$$M_h^2 = M_{h0}^2 + \frac{1}{\varepsilon} (...)$$

- Perfectly valid approach
- Except we know there is a high scale

Try to cancel quadratic divergences by adding new particles

- SUSY models add scalars with same quantum numbers as fermions, but different spin
- Little Higgs models cancel quadratic divergences with new particles with same spin

We expect something at the TeV scale

- If it's a SM Higgs then we have to think hard about what the quadratic divergences are telling us
- SM Higgs mass is highly restricted by requirement of theoretical consistency